
Multi-orbital effects in optical properties of vanadium sesquioxide

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2009 J. Phys.: Condens. Matter 21 064209

(http://iopscience.iop.org/0953-8984/21/6/064209)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 29/05/2010 at 17:45

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/21/6
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


IOP PUBLISHING JOURNAL OF PHYSICS: CONDENSED MATTER

J. Phys.: Condens. Matter 21 (2009) 064209 (5pp) doi:10.1088/0953-8984/21/6/064209

Multi-orbital effects in optical properties
of vanadium sesquioxide
Jan M Tomczak1,2 and Silke Biermann2,3

1 Research Institute for Computational Sciences, AIST, Tsukuba 305-8568, Japan
2 Japan Science and Technology Agency, CREST, Japan
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Abstract
Vanadium sesquioxide, V2O3, boasts a rich phase diagram whose description necessitates
accounting for many-body Coulomb correlations. The spectral properties of this compound
have been successfully addressed within dynamical mean field theory to the extent that results
of recent angle-resolved photoemission experiments have been correctly predicted. While
photoemission spectroscopy probes the occupied part of the one-particle spectrum, optical
experiments measure transitions into empty states and thus provide complementary
information. In this work, we focus on the optical properties of V2O3 in its paramagnetic phases
by employing our recently developed ‘generalized Peierls approach’. We obtain results in
overall satisfactory agreement with experiments. Further, we rationalize that the experimentally
observed temperature dependence stems from the different coherence scales of the charge
carriers involved.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Vanadium sesquioxide, V2O3, has been the subject of extensive
theoretical and experimental studies for more than three
decades. It is considered as the prototype compound, that
undergoes a Mott–Hubbard transition [1, 2] in its purest
form. Indeed, the high-temperature (T > TNéel) metal–
insulator transition upon chemical substitution, (V1−x Crx)2O3,
is isostructural and no magnetic order is acquired. Early
theoretical approaches resorted to the Hubbard model to
explain the electronic properties of V2O3. However, over the
years, experiments indicated that the physics of this material
is more involved and a realistic multi-orbital setup is needed
for the complexity of the correlation effects taking place (for
reviews see e.g. [1–3]).

The field of correlated materials gained major momentum
from the development of dynamical mean field theory
(DMFT) [4]. In combination with standard density functional
based methods like the local density approximation (LDA)
the calculation of spectral properties of materials with strong
electronic Coulomb interactions became possible. Over the
past years, LDA + DMFT increased our understanding of
materials such as transition metals, their oxides or sulfides, as
well as f-electron compounds [5]. Several works highlighted

the applicability of the technique to V2O3 [6–11]. In our
previous work [11], we find that the metal–insulator transition
is not due to the Brinkman–Rice mechanism [12] in its single-
band form, but results from the impact of Coulomb correlations
on the crystal-field splitting. Owing to its octahedral oxygen
surroundings, the vanadium 3d orbitals split into two eσ

g and
three lower lying t2g orbitals. The two manifolds of bands
are isolated in energy, both from each other and from other
orbitals. The trigonal part of the crystal field further splits
the t2g into an a1g and two lower lying degenerate eπ

g orbitals.
The local Coulomb correlations result in an increased a1g–eπ

g
splitting with respect to the LDA, causing a charge transfer
that pushes a1g spectral weight above the Fermi level. By
computing momentum-resolved spectral functions [13, 14, 11],
we made explicit predictions for angle-resolved photoemission
experiments. Recent measurements on (V1−x Crx)2O3 (x =
0.011) [15] nicely agree with the theoretical spectra, further
validating our current understanding of this compound.

2. Optical properties—prelude

Optical spectroscopy is an experimental probe complementary
to photoemission which is commonly analyzed in terms of the
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Figure 1. Theoretical optical conductivity of V2O3 at T ≈ 390 K for
a light polarization E ‖ [x 0 z] = [0.13, 0.0, 0.041]. Contributions
from different energy sectors (see appendix A.2): t2g → t2g,
t2g → eσ

g , O2p → t2g.

optical conductivity [16]

Re σαβ(ω) = 2πe2h̄

V

∑

k

∫
dω′ f (ω′) − f (ω′ + ω)

ω

× tr{Ak(ω
′ + ω)vk,α Ak(ω

′)vk,β} (1)

that is given by a convolution of spectral functions Ak(ω).4

The transitions are weighted by dipole matrix elements, called
Fermi velocities, vk,α , and the Fermi functions f (ω) select
the range of occupied and empty states, respectively. V is
the unit-cell volume, α, β denote Cartesian coordinates, and
�σαβ is the response in the α-direction for light polarization
along β . Both spectral functions and velocities are matrices
in the basis of localized orbitals, which we index by L =
(n, l, m, γ ), with the usual quantum numbers (n, l, m), while
γ labels the individual atoms in the unit cell. While the
computation of the Fermi velocities is straightforward, e.g. in
a plane-wave basis, their evaluation becomes tedious when
using localized orbitals as required by many-body approaches
such as LDA + DMFT. To this end, we employ the recently
generalized Peierls approach [3, 18, 19], which we briefly
summarize in appendix A.1.

In their pioneering work, Rozenberg et al [20] analyzed
the optical conductivity of V2O3 from the model perspective.
It was concluded that the phenomenology of the temperature
dependence in the conductivity can be understood by appealing
to the physics of the one-band Hubbard model. In the current
work, we will substantiate and extend these observations,
based on a realistic multi-band setup.

3. Optical properties—results

Our calculation of the optical conductivity is based on
the previous LDA + DMFT electronic structure computation
of [11], which used a one-particle Hamiltonian that was
downfolded [21, 22] to the vanadium t2g orbitals. Since optical

4 In the case of a single orbital, vertex-corrections vanish in the limit of infinite
lattice coordination [17]. Therefore the response can be expressed in terms of
spectral functions. In the general multi-orbital case this is an approximation.

Figure 2. Theoretical and experimental conductivity of V2O3.
Theory (same polarization as in figure 1): total (bold), orbital
contributions (dotted). Experiments: polycrystalline film, (T = 200,
400 K) Qazilbash et al [23] (long dashed), single crystal
(T = 300–600 K) Baldassarre et al [24] (short dashed).

experiments normally probe a much wider frequency range, we
employ an upfolding scheme that includes higher energy states
on the LDA level. Details are summarized in appendix A.2.

Figure 1 shows our theoretical optical conductivity for
V2O3 at T = 390 K for the indicated light polarization.
While in the Kohn–Sham spectrum, the t2g and eσ

g bands
are well separated, the correlations—accounted for by
LDA + DMFT for the t2g orbitals only [11]—result in an
intra-t2g conductivity that has weight up to energies well
beyond the onset of transitions into the eσ

g at about 2 eV.
Contributions stemming from transitions from the occupied
oxygen 2p orbitals into the t2g occur from around 3.5 eV
onwards.

Before turning to a more detailed analysis of the different
orbital contributions we compare our results to experimental
data (see figure 2). First, we notice the discrepancies between
the experiments: recent measurements on single crystals [24]
agree well with previous single crystal experiments [20], but
they are at variance with measurements using a polycrystalline
film [23]. While the use of polycrystalline samples, especially
in a metal, might be an issue, so is the fact that both
single crystal experiments were performed up to energies of
only a few eV although the extraction of the conductivity
involves a Kramers–Kronig transform. The low energy shape
of the theoretical conductivity resembles the polycrystalline
conductivity, but the absolute values differ. As to the single
crystal one, we note that the order of magnitude compares
favorably, while the shape tends to be comparable with the high
temperature curves only.

At high energies, we see that both the onset and the shape
of oxygen 2p derived contributions agree with experiment.
The upfolding scheme that uses the 2p bands from LDA is
thus a good approximation. This seems not to be true for
transitions into eσ

g orbitals: compared with experiment [23],
we realize that the spectral weight is too sharply defined and
no identification of particular structures is possible. This calls

2
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Figure 3. Theoretical optical conductivity of (V1−x Crx )2O3,
x = 3.8% at T = 580 K for a light polarization
E ‖ [x 0 z] = [0.13, 0.0, 0.0415]. Contributions from different
energy sectors: t2g → t2g, t2g → eσ

g , O2p → t2g. Gray lines show the
results for pure V2O3 (figure 1) for comparison.

for an LDA + DMFT calculation that includes all vanadium 3d
orbitals.

We now turn to a detailed analysis of orbital effects in the
optical conductivity. This is a topic that has not been dealt with
so far, since previous work neglected inter-band transitions
altogether [24].

At low energy only a small Drude-like tail appears. This
can be understood from the underlying electronic structure.
Indeed, the metallic character of V2O3 is mainly a result of
a1g charge carriers that have spectral weight at the Fermi level
only in a very limited region of the Brillouin zone (BZ), as can
be seen in figure 4 of [11].

As can also be inferred from that work, the local spectral
functions of a1g and eπ

g character display a pseudo-gap-
like behavior, and peak at finite energies rather than at the
Fermi level, accounting for the feature seen at 0.5 eV in
the conductivity. The latter originates from two types of
transitions5: at energies lower than 0.6 eV the spectral weight
is mainly due to transitions from a1g into low lying eπ

g orbitals,
that are restricted to a small region in the BZ, whereas at
slightly higher energies, 0.6 eV and above, the majority of
contributions derive from eπ

g to eπ
g transitions, which are

possible in a wide region of the BZ, yet are less prominent at
the �-point.

At this point we again use our knowledge about the
electronic structure of the compound: Poteryaev et al [11]
established an important orbital dependence of the quasi-
particle coherence scale. Indeed, down to 390 K, eπ

g excitations
are far from being coherent: the imaginary part of the
eπ

g self-energy reaches −0.45 eV at the Fermi level, while
a1g excitations have reached their coherence regime in our
calculation [11, 3]. Thus (eg

π ) a1g carriers are (not) particularly
sensitive to changes in temperature. As discussed above,
the low energy (<0.6 eV) optical response is determined

5 The following is inferred from ‘momentum-resolved optics’, i.e. from
distinguishing contributions of different points in the Brillouin zone (not
shown, see [3]).

by a1g–eπ
g transitions, while above 0.6 eV eπ

g –eπ
g transitions

become dominant. Given these two facts, one can—even
without explicit calculations—make some predictions about
the behavior of the optical response when the temperature is
raised: upon heating, the purely eπ

g -derived contributions will
not change as much as will those that involve the a1g orbitals,
so that the low energy response will be more sensitive than the
weight beyond 0.6 eV. In particular, a broadening (and thus
reduction in height) is expected for the very low energy part.
This gives a natural explanation for the dip behavior that is
observed in the experiments when the temperature is raised
above ∼450 K (see figure 1 in [24] or our figure 2)6. Explicit
calculations as a function of temperature (including inter-band
transitions) would be desirable to confirm the picture emerging
from our results. This challenging project is left for future
work.

In figure 3 we show theoretical results for the insulator
(V1−xCrx)2O3 (x = 3.8%). As discussed previously [11],
we have low but finite spectral weight at the Fermi level,
which results in some optical weight at low frequency.
Unfortunately, no experimental data are available for this
composition. Compared with pure V2O3, we note the
suppression of low energy spectral weight and the clear
distinction of transitions into the t2g upper Hubbard bands
at ∼4 eV.

4. Conclusions

In conclusion, we have presented calculations of the
optical conductivity of V2O3 in its paramagnetic phases
using the generalized Peierls approach. We obtain good
agreement with experiment and propose an explanation for
the experimentally shown temperature dependence of the
response as a signature of the orbital-selective coherence
of the system. Our upfolding scheme to include higher
energy orbitals captures well the transitions involving oxygen
states, but reveals the necessity of including all 3d orbitals
in a LDA + DMFT electronic structure calculation for this
compound.
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Appendix. Details of the formalism

A.1. Generalized Peierls substitution approach to
Fermi velocities

The Fermi velocities in (1) are given by elements of the
momentum operator P:

vL ′ L
k,α = 1

m
〈kL ′|Pα|kL〉 (A.1)

L = (n, l, m, γ ) and γ labels atoms in the unit-cell.
Equation (A.1) is easily calculated in plane waves, while
using a localized Wannier-like basis χRL(r) = 〈r|RL〉 =∑

k e−ikR〈r|kL〉 renders the evaluation tedious. Inspired by
the Peierls substitution approach [16] for lattice models, we
can separate the above into [3, 18, 19]:

vL ′ L
k,α = 1

h̄
(∂kα

HL ′L
k − i(ρα

L ′ − ρα
L )HL ′L

k ) + FH[{χRL}]. (A.2)

The terms in brackets are the Fermi velocity in the Peierls
approximation, which is here generalized to a multi-atomic
unit-cell: ρα

L is the α-component of the position of atom γ

within the unit-cell. This velocity is easy to evaluate since
it involves only elements of the Hamiltonian. It is crucial
that FH[{χRL}] reduces to intra-atomic contributions in the
limit of strongly localized orbitals χRL [3], which makes the
generalized Peierls velocity a good approximation for 3d and
4f systems for example.

Finally, we ask if the computation of the Fermi velocities
is really necessary in practice, or if one could also resort
to a simpler approximation consisting of simply omitting the
Fermi velocities. Due to its simplicity, this approximation is
in fact relatively popular for obtaining qualitative trends of
optical properties in correlated systems [24, 25]. Since the
conductivity is then a simple convolution of spectral functions,
inter-band transitions (L 
= L ′) are neglected and intra-band
transitions not properly weighted. As an illustration, we
show in figure A.1 a comparison of the optical conductivity
calculated within the generalized Peierls formalism compared
to the one computed from the simple convolution of spectral
functions7: besides the obvious discrepancy in absolute value,
omitting the Fermi velocities results in a noticeable change in
shape too. This is owing to the momentum dependence of
the matrix elements that favors certain regions in the Brillouin
zone while attenuating others.

A.2. Upfolding scheme for higher energy transitions

Although the treatment of many-body correlations can often
be cast into an effective low energy, downfolded system,
the range of its validity is usually far exceeded by optical
measurements. Thus it is desirable to allow for optical
transitions into higher energy orbitals. Also, the computation
of the Fermi velocities and the downfolding procedure do
not commute [16], and hence it makes a difference to which
Hamiltonian the generalized Peierls approach is applied. As

7 In order to have comparable scales, we chose for the latter case vk = r01I,
with the Bohr radius r0.

Figure A.1. Generalized Peierls conductivity versus the ‘no velocity
approximation’.

a matter of fact, the Wannier functions of a full Hamiltonian
are more localized than those of the downfolded one, whereby
the Peierls approximation becomes more accurate8. The key
quantity for the conductivity is the orbital trace in (1). For any
unitary transformation Uk holds

tr{vk Ak(ω
′)vk Ak(ω

′ + ω)}
= tr{U †

kvkUk Ãk(ω
′)U †

kvkUk Ãk(ω
′ + ω)} (A.3)

where we defined Ãk = U †
k AkUk. In the case of a pure

band-structure calculation (no self-energy), we can choose the
transformation such that it performs the downfolding, i.e. the
spectral functions Ãk, acquire a block-diagonal form. We
shall distinguish between the low energy (L ) and the high
energy block (H ): an LDA + DMFT calculation will add
local Coulomb interactions only to the former after the block-
diagonalization, which results in a self-energy that lives in
this sub-block, while high energy bands remain unchanged
and the block-diagonality is retained. Clearly the downfolding
procedure is not exact in the many-body framework. Indeed
the matrices that block-diagonalize the true interacting system
also depend on frequency, due to the dynamical nature of
the self-energy. Yet, when granting the approximate validity
of the downfolding, and using the Uk of the band-structure
calculation, we can specify

ṽk =
(

V1 W
W † V2

)
, Ãk(ω

′) =
(

L 0
0 H

)
,

Ãk(ω
′ + ω) =

(
L̄ 0
0 H̄

) (A.4)

with ṽk = U †
kvkUk. The many-body spectra L, L̄ are

substituted into the L -sector, while H , H̄ of the H -sector
stem from the initial band-structure, and (A.3) read

LV1 L̄V1 + LW H̄ W † + H V2H̄ V2 + H W † L̄W. (A.5)

For transitions within the L -block, the velocity V1 appears,
which is the L -block of the transformed velocity. It is

8 Indeed the downfolding can be viewed as a unitary transformation that
block-diagonalizes the Hamiltonian (see below). The change in accuracy
manifests itself in the basis dependence of the optical conductivity within the
Peierls approach.
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different from the element computed after the downfolding.
With the above, we moreover include transitions from,
to and within the high energy block9. Comparison to
experiments then allows one to assess whether correlation
effects substantially modify the spectrum of downfolded
orbitals as well, or whether for them the initial band-structure
is satisfying (see above for the V2O3 case).
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